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INTRODUCTION

Particle simulation methods continue to attract considerable attention,
especially as a technique for analyzing low density, hypersonic re-entry
flows. It is well known that these methods are expensive computationally
and require large amounts of processor memory for simulations of practical
interest. Recent studies have focused on reducing the computational cost
of particle simulation methods through reformulation of underlying algo-
rithms to permit vectorization!?. The pursuit of substantial vectorization
has been primarily motivated by the availability of current state of the art
supercomputers whose performance capabilities rely principally on vector
concepts. Examples of such machines are the Cray-2 and the Cray-Y/MP
from Cray Research. As single processor performance begins to asymptote,
attention is focusing on parallel processing as a means of providing increas-
ingly powerful machines. Even the aforementioned Cray computers have
multiple CPU’s (4-8) although the primary source of performance contin-
ues to be through vectorization (factor of 10-20).

Powerful new machines are now available in the commercial market
that promise large scale parallelism along with lower cost to performance
ratios as compared to current supercomputers. Examples of such machines
include the Thinking Machines Connection Machine CM-2 and the Intel
iPSC-2/860. Particle simulation methods have already been implemented
on these and other parallel machines®#®. These initial results are very
promising, indicating that these parallel machines can provide an excellent

platform for particle simulation computations.



Investigations during this contract period have examined the imple-
mentation of a general particle simulation code in both vector and mul-
tiprocessor environments. Focusing on a complete simulation code allows
not only a measure of raw compute performance, but also evaluation other
elements such as input/output (I0) performance and overall usefulness of
the computer-code combination in an engineering context. A primary goal
of this continuing study is to produce a code that is easily ported across a
wide range of parallel computer architectures. The Intel iPSC-2/860, Cray-
2, and Cray-Y/MP computers are chosen as initial target axchitectﬁres
because of their performance, proven suitability to particle methods, and
availability. This research will provide a framework for performing larger
scale simulations than is currently possible as next generation supercom-

puters become available.

SIMULATION DESCRIPTION

A gas in a particle simulation method is statistically represented by a
number of particles followed over a number of discrete time sfeps using the
following sub-steps: 1) particles are moved through space, each with their
individual velocity, 2) the state of particles which have crossed boundary
surfaces are modified appropriately, 3) random candidate collision pairs are
chosen for all of space ensuring both particles in a pair occupy the same
cell (a small volume of the physical domain), 4) collisions are statistically

chosen via a collision selection rule, 5) pairs of particles having appropriate



ouput as well as file ouput for use as input to other available plotting pack-
ages.

Work by Brian Haas, a Stanford Graduate student, has recently led
to chemical models compatible with vectorization” and these have recently
been implemented into the current code, referred to as PSim3. This code
is capable of addressing three dimensional problems involving arbitrary ge-
ometries, however, a simply cubical cell network is retained from previous
work! at the present time limiting spatial resolution in solving some prob-
lems. |

Note that a primary difference of the adopted approach from that of
the well known DSMC method?® is the use of non-spatially ordered sam-
pling of candidates for a given event. For example, candidate collision
pairs are collected for all space before selection of actual collisions from
these candidates is initiated and the size of this sample may be arbitrary
as long as it is known at the time of selection from the candidates!. This
eliminates the need for a sort operation of particles into cells as is required
when applying the time counter® or the no time counter (NTC)® algo-
rithms of Bird. There the sample of candidate pairs is constrained to a
calcula.téd size in each cell and this sample size most be generated exactly.
The arbitrary sample size approach was adopted primarily 3o aliow for &
ficient vectorization? and is retained in the current work for the same rea-
son. Vectorization and parallel processing are complementary and the ob-
jective here is to develop a truly portable pode l}g,ving a high performance
on platforms with multiple processors, vector hardware, or ideally both.



TARGETED COMPUTER ARCHITECTURES

There is an ever increasing variety of multiple processor based com-
puters being made available. One helpful classification makes a distinction
between Single Instruction Multiple Data (SIMD) machines and Multiple
Instruction Multiple Data (MIMD) machines. Another important classifi-
cation dealing with multiple processor computers deals with memory sys-
tem architecture. Shared memory systems allow all processors access to
a single bank of global memory. Distributed memory systems associate a
bank of memory with each processor and communication between proces-
sor is only possible via a interconnect network. Of course, machines may
combine elements of shared and distributed memory in hybrid memory or-
ganizations.

It is not feasible with current software development technology to pro-
vide a singe particle simulation code that runs efficiently across all possible
parallel machines a.rch1tectures Many unique programming techniques are
required to effectively utilize many of the variety of available parallel com-
puters.

Multiple instruction streams offer the greatest flexibility for the devel-
opment of a particle simulation method because arbitrarily large effective
vector lengths become difficult to fully utilize as complexity is added to
the physicad models employed. This is best understood by example. Qut
of a large collection of particles moved during a time step, 2 much smaller
number may eollide with other particles. Typically even a smaller num-

ber will interact with boundaries and yet a smaller number will chemically
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react. Very infrequent events may underutilize a SIMD machine having

a large effective vector length. For this reason the code is written assum-
ing a MIMD architecture, however, vectorizable algorithms are retained to
take advantage of any traditional vector hardware having modest vector
lengths. This is important as to maintain a high perfdrmance capability
on existing Cray supercomputers. No assumptions are made regarding the
memory organization; only that processors may communicate with one an-
other in an asynchronous fa.shmn Details of this communication vary from

computer to computer and represents the sole machine dependent code

module in PSim3.

PROGRAMMING MODEL

Since no assumptions are made about memory organization, commu-
nication between the processors must not rely on shared memory. As the
Intel iPSC-2/860 is one of the first target machines and because it relies on
message passing primitives for communication, an a.bstracted message pass-
ing model was chosen for all interprocessor communication. Message pass-
ing primatives are not inherent on Cray machines runing current versions
of Unicos so these must be implemented using pipes, sockets, or shared
memory.

The PSim3 code is written such that there is a host process running
for the duration of the simulation. This host process handles the user in-
terface and synchronizes activity of a number of node processes which pér-

form the actual simulation. The host process communicates with nodes



via the message passing model. In the case of the 1PSC-2/860, the host
process runs on an actual front end computer based on an i386 processor
while each node process has a dedicated i860 microprocessor and 8Mbytes
of local memory. On the Cray machines the host process simply runs on
any available processor as does each of the node processes. In the case of
the Cray implementation the number of node process may exceed the num-
ber of available physical processors. The Cray implementation is equally
capable of running on any standard Unix system having any number of
processors that can run Unix processes. Note that the processing ﬁodes on
the iPSC-2/860 do not run Unix processes, rather each node runs a small
message passing kernel. This requires special programming different from
the Cray implementation, however, all machine dependent code is encapsu-

lated in a single module as mentioned earlier.

PARALLEL DECOMPOSITION

The most important issue is how to &ivide the simulation computa-
tion across nodes processes using the single consistent message passing pro-
gramming model defined above. Since communication can easily become
a bottleneck in parallel applications when interconnect network and pro-
cessor speeds are not balanced, it is desirable to exploit some form of data
locality. The most strait forward source of such locaiity is to divide the
spatial domain of the simulation into a number of sub-domains or regions
equal to the desired number of node processes. Communication between

Processes otCurs as a particle passes from one region to another. Particles



crossing region “seams” are treated simply as an additional type of bound-
ary condition.

Replication of data structures across processes must be minimized as
memory is a limited resource. The data representation of physical space,
for example, must be distributed along with the particles that occupy that
space. This is accomplished by surrounding each simulated region of space
by a shell of extra cells that, when entered by a particle, directs that par-
ticle to the neighboring region. Nowhere can there exist a single represen-
tation of all simulated space as this would quickly become a seﬁoué bot-
tleneck for large simulations performed using many regions. Load balanc-
ing is obtained by allowing region sizes and locations to change with time,

however this has not yet been implemented.

PERFORMANCE RESULTS

Figure 1 presents initial results from the implementation of PSim3 in-
cluding five specie air chemistry on the Intel iPSC-2/860. Performance is
given by elapsed time in seconds per time step per simulated particle. Sim-
ilar runs without chemistry or multiple processor support carried out on a
single Cray-2 processor and a single Cray-Y /MP. processor are presented.
Testing has shown that chemistry models adds a 10% performance penalty
when running the iPSC-2/860 code. Figure 2 presents the speedup ob-
tained with the iPSC code as the number of processors utilized is doubles.
It should be noted that the problem size is being doubled along with the

number of processors and a uniform gas is being simulated at the present



time to avoid the load balancing issue. It is clear from these early results
that the full Intel iPSC-2/860 machine would provide at least the perfor-
mance of a single Cray-Y/MP processor and better than 2 Cray-2 proces-
sors. Note the speedup with 64 processors is 45 and the speedup curve is
near linear. This indicates that many more processors could be dedicated

to a particle simulation in an efficient manner.

CONCLUDING REMARKS

A very high performance, vectorized, general puropse particle éimula.—
tion code has been extented to include the effect of multi-component gases.
Additionally, vector compatible finite rate chemistry modeling has been in-
cluded providing a very powerful and flexible simulation tool. Extensive
graphics oriented support code has also been made available.

It also appears that particle simulation methods benefit greatly from
the use of parallel machines. The new simulation code has been written in
such a way as to be easy to port to new high performance MIMD machines
as they become aQaﬂable. The code will very soon provide a good compar-
ison of the cost /performance ratios of the Intel iPSC-2/860, the Cray-2,

and the Cray-Y/MP, when applied to a particle simulation problem.
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Figure 1) Initial PSim3 performance with chemistry on the Intel iPSC-
2/860. Elapsed time in seconds per particle per time step. Problem size
varies with number of processors. Cray-2 and Cray-Y/MP single processor

times provided for comparison but using CPU time without chemistry.
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for PSim3 running on the Intel iPSC-2/860.

14



ABSTRACT SUBMITTAL

PARTICLE SIMULATION IN A MULTIPROCESSOR ENVIRONMENT

Jeffrey D. McDonaldt
Eloret Institute, 3788 Fabian Way,
Palo Alto, California 94303

INTRODUCTION

Particle simulation methods continue to attract
considerable attention, especially as a technique for
analyzing low density, hypersonic re-entry flows. It
is well known that these methods are expensive com-
putationally and require large amounts of processor
memory for simulations of practical interest!. Recent
studies have focused on reducing the computational
cost of particle simulation methods through reformula-
tion of underlying algorithms to permit vectorization?
The pursuit of substantial vectorization has been pri-
marily motivated by the availability of current state of
the art supercomputers that whose performance capa-
bilities rely principally on vector concepts. Examples
of such machines are the Cray-2 and the Cray-Y/MP
from Cray Research. As single processor performance
begins to asymptote, attention is focusing on parallel
processing as a means of providing increasingly power-
ful machines. Even the aforementioned Cray comput-
ers have multiple CPU’s (4-8) although the primary
source of performance continues to be through vector-
ization (factor of 10-20).

Powerful new machines are now available in the
commercial market that promise large scale parallelism
along with lower cost to performance ratios as com-
pared to current supercomputers. Examples of such
machines include the Thinking Machines Connection
Machine CM-2 and the Intel iPSC-2/860. Particle sim-
ulation methods have already been implemented on
these and other parallel machines®®%, These initial
results are very promising, indicating that these par-
allel machines can provide an excellent platform for
particle simulation computations.

This paper to examines the implementation of a
general particle simulation code in a multiprocessor
environment. Focusing on a complete simulation code
allows not only a measure of raw compute perfor-
mance, but also evaluation other elements such as in-
put/output (IO) performance and overall usefulness
of the computer-code combination in an engineering
context. A primary goal of this study is to produce a
code that is easily ported across a wide range of par-
allel computer architectures. The Intel iPSC-2/860,

t Research Scientist, Member, AIAA. Mailing Ad-
dress: NASA Ames Research Center, MS 230-2, CA
94035.

Cray-2, and Cray-Y/MP computers are chosen as ini-
tial target architectures because of their performance,
proven suitability to particle methods, and availability.
It is hoped that this research will provide a framework
for performing larger scale simulations than currently
possible on next generation supercomputers.

SIMULATION DESCRIPTION

Recently, investigations into particle simulation
techniques have been carried out by a group con-
sisting of researchers from both Stanford University
and NASA Ames research center. Until very recently,
practical large-scale implementations of the adopted
methods have been limited to non-reacting multi-
component gases. Emphasis had been on the restruc-
turing of basic algorithms to enhance computational
performance on vector computer architectures. Work

by Haas has recently led to chemical models compat-

ible with vectorization” and these have been imple-
mented into the current code, referred to as PSim3.
This code is capable of addressing three dimensional
problems involving arbitrary geometries however a
simply cubical cell network is retained from previous
work? at the present time limiting spatial resolution
in solving some problems.

A gas in a particle simulation method is statisti-
cally represented by a number of particles followed over
a number of discrete time steps using the following
sub-steps: 1) particles are moved through space, each
with their individual velocity, 2) the state of parti-
cles which have crossed boundary surfaces are modified
appropriately?, 3) random candidate collision pairs are
chosen for all of space ensuring both particles in a
pair occupy the same cell?, 4) collisions are statisti-
cally chosen via a collision selection rule®3, 5) pairs
of particles having appropriate type for a user spec-
ified reaction are considered for that reaction, and
reacted on a statistical basis”, 6) collision pairs that
have not reacted undergo thermal collisions?, 7) sam-
ples are optionally taken to form macroscopic results.
Details concerning each of these sub-steps are beyond
the scope of this paper and are covered in the cited
references.

Note that a primary difference of this approach from
that of the well known DSMC method® is the use



of non-spatially ordered sampling of candidates for a
given event. For example, candidate collision pairs are
collected for all space before selection of actual colli-
sions from these candidates is initiated and the size of
this sample may be arbitrary as long as it is known at
the time of selection from the candidates?. This elimi-
nates the need for a sort operation of particles into cells
as is required when applying the time counter® or the
no time counter (NTC)?® algorithms of Bird. There the
sample of candidate pairs is constrained to a calculated
size in each cell and this sample size must be gener-
ated exactly. The arbitrary sample size approach was
adopted primarily to allow for efficient vectorization®
and is retained in the current work for the same rea-
son. Vectorization and parallel processing are comple-
mentary and the objective here is to develop a truly
portable code having a high performance on platforms
with multiple processors, vector hardware, or ideally
both.

TARGET ARCHITECTURES

There is an ever increasing variety of multiple pro-
cessor based computers being made available. One
helpful classification makes a distinction between Sin-
gle Instruction Multiple Data (SIMD) machines and
Multiple Instruction Multiple Data (MIMD) machines.
Each of these is now briefly examined

The first, SIMD, describes the case where a single
issued machine. instruction is intended to operate si-
multaneously in the same way on a number of distinct
dataelements. The larger the number of data elements
the larger the degree of parallelism. Vector processors
are often classified as SIMD although there the single
instruction does not act simultaneously across data el-
ements, rather a “vector” of elements are operated on
in a highly efficient pipelined fashion. High end vec-
tor machines typically also provide high scaler perfor-
mance which reduces the impact of small serial code
segments that cannot be vectorized. Massively parallel
SIMD architectures such as the Connection Machine
are similar to vector processors except the effective
vector length is very long (up to 64K for the CM-2)
and operations are actually simultaneous as there is
a separate processor for each data element. Because
the effective vector length is long and the individual
processors are typically not very powerful, it is very
important to minimize serial code segments or code
segments using only a small fraction of the available
vector size on SIMD computers such as the Connection
Machine. ‘

The second class, MIMD, describes the case where
a number of processors have the ability to commu-
nicate with one another but are free to execute dis-
tinct instruction streams. There are a wide variety of
machines in this category that span a broad perfor-
mance range, from personal computer add-in boards
and workstations to supercomputers.

Abstract Submittal - J. McDonald

Another important classification dealing with mul-
tiple processor computers deals with memory system
architecture. Shared memory systems allow all proces-
sors access to a single bank of global memory. This sit-
uation is depicted in figure 1(a) where inter-processor
communication may be via shared memory and/or
a separate inter-processor communications network.
Distributed memory systems associate a bank of mem-
ory with each processor and communication between
processor is only possible via a interconnect network as
shown in figure 1(b). Of course, machines may com-
bine elements of shared and distributed memory as
illustrated in figure 1(c).

Even the very brief introduction given above, con-
cerning parallel machine classification, makes it very
clear that it is not feasible with current software de-
velopment technology to provide a singe particle simu-
lation code that runs efficiently across all possible par-
alle] machines. Many unique programming techniques
are required to effectively utilize many of the variety
of available parallel computers.

Mulitiple instruction streams offer the greatest flex-
ibility for the development of a particle simula-
tion method because arbitrarily large effective vector
lengths become difficult to fully utilize as complex-
ity is added to the physical models employed. This
is best understood by example. Qut of a large col-
lection of particles moved during a time step, a much
smaller number may collide with other particles. Typ-
ically even a smaller number will interact with bound-
aries and yet a smaller number will chemically react.
Very infrequent events may underutilize a SIMD ma-
chine having a large effective vector length. For this
reason the code is written assuming a MIMD archi-
tecture however vectorizable algorithms are retained
to take advantage of any traditional vector hardware
having modest vector lengths. This is important as
to maintain a high performance capability on exist-
ing Cray supercomputers. No assumptions are made
regarding the memory organization; only that proces-
sors may communicate with one another in an asyn-
chronous fashion. Details of this communication will
vary from computer to computer and represents the
sole machine dependent code module in PSim3.

PROGRAMMING MODEL

Since no assumptions are made about memory orga-
nization, communication between the processors must
not rely on shared memory. As the Intel iPSC-2/860
is one of the first target machines and because it relies
on message passing primitives for communication, an
abstracted message passing model was chosen for all
interprocessor communication. Message passing pri-
matives are not inherent on Cray machines runing cur-
rent versions of Unicos so these must be implemented
using pipes, sockets, or shared memory. Sockets have
initially been chosen because they offer more flexibility

2



3

Abstract Submittal - J. McDonald

than the other primatives .

The PSim3 code is written such that there is a host
process running during the simulation. This host pro-
cess handles the user interface and synchronizes ac-
tivity of a number of node processes which perform
the actual simulation. The host process also commu-
nicates with nodes via the message passing model. In
the case of the iPSC-2/860, the host process runs on
an actual front end computer based on an i386 pro-
cessor while each node process has a dedicated i860
microprocessor and 8Mbytes of memory. On the Cray
machines the host process simply runs on any available
processor as does each of the node processes. In the
case of the Cray implementation the number of node
process may exceed the number of available physical
processors. The Cray implementation is equally ca-
pable of running on any standard Unix system having
any number of processors that can run Unix processes.
Note that the processing nodes on the iPSC-2/860 do
not run Unix processors rather each node runs a small
message passing kernel. This requires special program-
ming different from the Cray implementation, how-
ever, all machine dependent code is encapsulated in a
single module as mentioned earlier.

PARALLEL DECOMPOSITION

The most important issue is how to divide the sim-
ulation computation across nodes processes using the
single consistent message passing programming model
defined above. Since communication can easily be-
come a bottleneck in paralle] applications when in-
terconnect network and processor speeds are not bal-
anced, it is desirable to exploit some form of data lo-
cality. The most strait forward source of such locality
is to divide the spatial domain of the simulation into a
number of sub-domains or regions equal to the desired
number of node processes. Communication between

processes occurs as a particle passes from one region

to another. This is the method used by Wilmoth® and
it is also used in this work to minimize communication.
Particles crossing region “seams” are treated simply as
an additional type of boundary condition.

Replication of data structures across processes must
be minimized as memory is a limited resource. The
data representation of physical space, for example,
must be distributed along with the particles that oc-
cupy that space. This is accomplished by surrounding
each simulated region of space by a shell of extra cells
that, when entered by a particle, directs that particle
to the neighboring region. Nowhere can there exist
a single representation of all simulated space as this
would quickly become a serious bottleneck for large
simulations performed using many processors. Figure
2 depicts a decomposition of a physical domain into
four smaller regions, demonstrated in two dimensions
for simplicity.

Load balancing is obtained by allowing region sizes

and locations to change with time. There is a con-
stant number of regions along each spatial dimension
and each of their shapes corresponds to a rectangular
parallelepiped. A region can be altered in size by only
a single cell in each spatial dimension during a sin-
gle adaption step. This greatly simplifies the adaption
procedure when using a distributed representation of
space. The computational and communication costs
of such an adaption are expected to be low enough to
allow it to be performed every 10— 25 steps during the
transient phase of a simulation.

PERFORMANCE RESULTS

Figure 3 presents initial results from the implemen-
tation of PSim3 including five specie air chemistry on
the Intel iPSC-2/860. Performance is given by elapsed
time in seconds per time step per simulated particle.
Similar runs without chemistry or multiple processor
support carried out on a single Cray-2 processor and

. a single Cray-Y/MP processor are presented. Test-

ing has shown that chemistry models adds a 10% per-
formance penalty when running the iPSC-2/860 code.
Figure 4 presents the speedup obtained with the iPSC
code as the number of processors utilized is doubles. It
should be noted that the problem size is being doubled
along with the number of processors and a uniform
gas is being simulated at the present time to avoid the
load balancing issue. It is clear from these early results
that the full Intel iPSC-2/860 machine would provide
at least the performance of a single Cray-Y/MP pro-
cessor and better than 2 Cray-2 processors.. Note the
speedup with 64 processors is 45 and the speedup curve
is near linear. This indicates that many more proces-
sors could be dedicated to a particle simulation in an
efficient manner.

CONCLUDING REMARKS

From early results it appears that particle simula-
tion methods benefit greatly from the use of parallel
machines. The new simulation code has been written
in such a way as to be easy to port to new high per-
formance MIMD machines as they become available.
The code will very soon provide a good comparison of
the cost/performance ratios of the Intel iPSC-2/860,
the Cray-2, and the Cray-Y/MP, when applied to a
particle simulation problem.
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Figure 4) Initial results for speedup ploted against number of processors for PSim3 running on the Intel

iPSC-2/860.
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Abstract

The Discrete Particle Simulation method, due to
Baganoff, has recently been extended to allow rep-
resention of gases composed of multiple species, to
general power-law molecular interactions and to per-
mit flows in thermal non-equilibrium. Particular at-
tention has been paid to the implementation of this
physics while retaining the efficiency of the original al-
gorithm. Here, the enhanced algorithm is applied to
the simulation of the flow field about the Aeroassisted
Flight Experiment (AFE) vehicle with the same flight
parameters as in a previous paper. The enhancements
to the algorithm are introduced and comparisons are
made to the previous calculation.

Introduction

Renewed interest in hypersonic flight in the upper at-
mosphere has sparked a renaissance of development
of simulation methods for rarefied flows. Whereas
continuum methods are applicable and efficient at
the high densities associated with lower altitudes, it
is appropriate to use particle simulation methods in
the free molecular regime at very high altitude and
in the so-called transition regime where the domains
of applicability begin to overlap. Modern particle
simulation methods have been developed by several
investigators, 123 however the most widely used is the
Direct Simulation Monte-Carlo (DSMC) method due
to Bird.* This method has also been applied to the
simulation of the flow field about the NASA Aeroas-
sisted Flight Experiment (AFE)®€. Unfortunately
Research Scientist, Member AIAA

Research Scientist, Member AIAA. Mailing Address:
NASA Ames Research Center, MS-230-2, CA 94035
Student Member AIAA

This paper is declared a work of the U.S. Govern-
ment and is not subject to copyright protection in
the United States.

the structure of the algorithm in references 5 and 6
requires enormous computer resources limiting its fre-
quent application. Computer time requirements have
been the limiting factor in the use of this algorithm
rather than the physical size of the problem as ex-
pressed by memory requirements.

In the last four years, work has progressed at Stanford
University and NASA Ames Research Center”8:%:10
to reformulate the basic ideas inherent in the DSMC
method in order to take advantage of modern vector
and parallel computer architectures.

The goal has been to achieve at least an order of mag-
nitude greater performance in order to handle a corre-

~ spondingly larger number of particles than has been

previously possible. This goal has been reached in
previous papers with the intentional neglect of some
of the physics known to be important in this flight
regime. In particular, the gas model consisted of a
single diatomic species. Although the simulated par-
ticles contained both translational and rotational en-
ergy, the algorithm assumed that these energy modes
were close to equilibrium. The only relaxation model
represented in the energy transfer to rotational energy
was a non-physical computational peculiarity inher-
ent in the model for the collision mechanics. There
was previously no attempt made to model the vi-
brational energy modes. In large applications, in-
termolecular potentials were assumed to be “hard
sphere” which is known to be a harder potential and
result in less viscous behavior than real gases. The
collision mechanics were performed in a unique and
efficient way by the “Shuffle Algorithm”™!!. Unfor-
tunately, this algorithm has proven difficult to extend
to mixtures of gases and did not easily allow for mod-
eling of vibrational modes. In order to ensure vector-
ization of some critical parts of the algorithm small
portions of the original code were written in Cal-2
assembler limiting the portability of the code to the .



Cray-2. The efficiency of the original algorithm, how-
ever, was quite good, allowing computation times less
than 2 psec per particle per time step on a Cray-2.
Calculations with up to 10 million particles could be
performed in less than five hours of CPU time.

In the last year much progress has been made in en-
hancing the physical modeling while retaining the
basic efficiency of the algorithm. The calculation
of the collision probability has been extended to
general power law potentials allowing more realis-
tic representation of viscous behavior. The previ-
ous collision algorithm derived much of its efficiency
from the symmetry of representing all energy modes
as velocities}!, Rotational and vibrational energy
modes for diatomic species are now represented di-
rectly instead of by using rotational velocity compo-
nents. Now that this symmetry has been removed, ad-
ditional problems associated with collisions between
species of differing masses can be resolved by directly
introducing isotropic scattering. Energy transfer to
rotation and vibration are now represented by addi-
tional probabilities that model the relaxation to these
quantities. Multiple species are now represented effi-
ciently, and the implementation of chemical reactions
amongst them, while retaining high performance, will
be be the subject of another paper.

The improvements to the method will be outlined and

then its application to the simulation of the flow field
about the AFE flight vehicle will be described. Com-
parisons will be made to calculations made with the
previous version of the method.

Method

Recent applications of the Stanford particle simula-
tion method have been limited to single component
monatomic or diatomic gases!®. This permitted sim-
plifications that allowed more rapid development of
other essential aspects of the method, such as the col-
lision selection algorithm. Recent extensions of the
method include an ability to address multiple com-
ponent gases exhibiting general power law molecular
interactions as well as a more general treatment of
rotational relaxation and the inclusion of vibrational
energy modes. In the course of adding these elements
to the simulation method, several changes to the algo-
rithm have been made. These will be briefly reviewed
here with reference to more detailed descriptions.

The collision selection algorithm used in the Stan-
ford particle method has the advantage of being com-

pletely vectorizable3. The applicability of the ba-
sic algorithm has been extended to general gas mix-
tures while retaining vector computer architecture
compatibility’!. The resulting selection probability
for collision of a particle of specie a and a particle of
specie b from a sample size of S, candidate collision
pairs having the specie combination ab is given by

NaNy

P= 05554
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where n, and n, are specie number densities, 8d2, is
a simulation normalized reference collision cross sec-
tion, g is the relative collision speed, ag,; is the as-
sumed power law exponent, and At is the duration
of the time step. Detailed descriptions of the analysis
and implementation for this collision selection rule are
available, as are a variety of techniques for assembling
a collection of candidate collision pairs®:!!.

The algorithm to implement collision mechanics has
changed radically since the previous AFE results were
presented!?. These changes were made necessary by
two factors; namely the difficulty of extending the
previous collision mechanics tocollisions between par-
ticles having different numbers of atoms and the in-
clusion of vibrational energy modes. Each of these
issues are now briefly examined, however, reference
11 presents these in more detail.

The original shuffle algorithm”8:%:1? operated by cre-
ating a random signed permutation of the relative ve-
locity vector components between the colliding par-
ticles. This generated a new post collision velocity
state while insuring conservation of momentum and
energy. This necessitated the representation of the ro-
tational energy of a diatomic particle by a two compo-
nent velocity vector. During a collision both internal
and translational velocity states could be exchanged
by the shuffle algorithm when the rotational modes
were to relax. The collision of a monatomic particle
with a diatomic particle presents a serious difficulty
when using this algorithm. In such a collision, the
complete velocity state of each particle has a different
number of components and the definition of a relative
velocity state is not obvious. The inclusion of vibra-
tional energy presents similar problems. Because vi-
brational energy cannot typically be considered fully
excited, a velocity representation analogous to rota-
tion is not possible. Because of these issues, and the
fact that modifications to the shuffle algorithm would
prove computationally expensive, a more traditional



approach is now employed.

Isotropic scattering consistent with the variable hard
sphere (VHS) model'? is expensive due to the re-
quired evaluation of transcendental functions in se-
lecting random post collision relative velocity vectors.
Experience with the “Shuffle Algorithm” has shown
that a discrete post collision scattering model is an
adequate description in a particle simulation. This
has been demonstrated even with extremely coarse
discretizations of isotropic scattering. As such, it
has proven adequate and very efficient to generate
a large number of unit direction vectors chosen from
an isotropic scattering distribution and choose from
these at random for each collision!!. The amount of
memory used for such a table driven scheme is trivial
compared to other memory intensive elements of the
simulation.

Use of discretized isotropic scattering for transla-
tional modes requires a complementary technique for
addressing internal energy modes. The Borgnakke-
Larsen phenomenological model has been in wide-
spread use for dividing energy between translational
and internal energy modes since its inception’2. This
method has computationally expensive elements and
it is desirable to consider the use of a discretized table
driven variant of it for the sake of efficiency. This is
not possible in general because of the strong temper-
ature dependence of the vibrational energy modes. It
is possible however to address the rotational modes
with a table lookup scheme while separately manag-
ing the vibrational modes with a new model as de-
scribed in detail in reference 11. Briefly, the post
collision vibrational state is obtained through an it~
erative procedure which first utilizes rotational ener-
gies of the colliding particles as samples from a con-
tinuous two degree of freedom system. This may be
quantized by the characteristic energy for vibration
for the specie to arrive at a new vibrational state
for the particle. After subtracting the sampled vi-
brational energy from the total collision energy, the
remaining energy is then divided between translation
and rotation using the Borgnakke-Larsen model as-
suming a fixed, two degree of freedom internal en-
ergy system for rotation. Since the number of inter-
nal modes is fixed for rotation, the distribution for the
division of energy between relative translation and ro-
tation may be tabulated. This sequence of steps may
be repeated to remove correlation between rotational
and vibrational energy modes. Three iterations has

proven to be adequate even in highly non-equilibrium
situations!!. Once again, the amount of memory used
for such ‘a table driven scheme is trivial compared to
other memory intensive elements of the simulation.

Since the algorithm was initially developed around
a gas consisting of a single monatomic or diatomic
species, there were simplifications that allowed con-
struction of a very efficient code. For example, be-
cause all particles had the same mass by default, it
was not necessary to store a mass identifier for each
species, nor was it necessary to carry the mass in the
equétions to be evaluated. The mass was normal-
ized to unity and it could simply be dropped from
the calculation. The introduction of multiple species
has complicated the algorithm in several ways. It is
of course necessary to identify the specie type of each
particle, which adds to storage requirements. There is
also an increased amount of computation required in
collision mechanics as there are more free parameters,
such as mass and number of atoms per particle, that
must be taken into account. The cost of including

 the effects of vibration are minimal due both to the

efficiency of the previously mentioned algorithm and
the relatively infrequent occurrence of vibrationally
relaxing collisions.

Previous implementations of the algorithm were writ-
ten in the C programming language with time critical
parts duplicated in Cray-2 machine code. This had
restricted efficient use of the code to the Cray-2. In
the past year, however, C compilers for the Cray have
evolved to the point where the time critical constructs
in the algorithm can now be recognized and vectorized
by the compiler with acceptable performance loss in
comparison to hand generated machine code. Com-
piler generated code for elements of this algorithm ap-
pear to be no more than 30% slower than the increas-
ingly complex hand generated machine code. Further
development on assembler versions were abandoned
for this reason, yielding a large gain in portability
and simplifying continued development. Current per-
formance estimates will be discussed in a later section

Geometry

Inherent in the current implementation of the method
is the representation of geometries in a cubic Carte-
sian mesh. This was motivated by the idea that the
resulting savings in CPU time and memory could be
used on simulating larger numbers of particles and a
finer overall mesh. The rejection of body-fitted co-



ordinates introduces complications in the representa-
tion of geometries. This problem was addressed by
the creation of an algorithm to represent a body as a
collection of planar facets associated with each mesh
cell'®. In the previous calculation the AFE was repre-
sented by the aeroshell forebody and was terminated
by a flat plate on the afterbody. The flight vehicle
will, however, have a hexagonally shaped afterbody
attached to the flat plate that is designed to hold in-
strumentation, maneuvering thrusters, and a booster
that will drive the vehicle into the atmosphere. After
the booster burns out it will be ejected leaving the
hexagonal afterbody with minor appendages. This
afterbody without the appendages has been added
to the current geometry as shown in figure 1. The
serrated appearance of the body results from the rep-
resentation of the surface as a planar facet for each
mesh cell. In cells through which a sharp edge of the
body passes, there can be at least two defining planes
associated with the intersecting surfaces. In order to
prevent arbitrary rounding of these edges one of the
original body surfaces is chosen to define the body for
the cell. This surface will inevitably extend beyond
the original body contour by up to one cell dimension.
This represents the level of resolution of the defin-
ing geometry. Particles that interact with the surface
within a given cell will see the plane associated with
that cell as depicted in figure 1. In this particular
case, the serrations are in a region of expanding flow
where the local mean free path approaches the size of
a mesh cell and are expected, for this reason, to have
no noticeable effect on the flow field.

Calculations

The flight regime to be simulated was chosen to cor-
respond to the calculation of the previous paper. The
altitude was nominally 100km where the mean free
path is 10cm and the free stream temperature is
190K. The Mach number was chosen to be 35.42.
The aeroshell diameter is 4.25m which is represented
by 45 mesh cells in the calculation. To maintain the
specified Knudsen number of 0.0235 this dictates a
mean free path in simulation units of 1.03 mesh cells.
As mentioned in the description of the enhancements
to the method, chemical reactions are not yet mod-
eled, however multiple species are represented. The
gas mixture was composed of 18.1% O, 78.3% N3 and
3.6% O, corresponding approximately to the equi-
libriumn composition of air at this altitude. The in-
termolecular potentials of all species were modeled

with a ninth order power law which is expected to
approximate the known viscous behavior. The criti-
cal temperature for the vibrational modes was set to
3390K for nitrogen and to 2270K for oxygen. The
surface boundary conditions impose diffuse reflection
and complete thermal accommodation to the fixed
wall temperature of 1500K. Relaxation of internal
energy modes was controlled by fixed collision num-
bers of 5 for rotation and 50 for vibration.

The calculation is started with a relatively small num-
ber of particles in order to establish the gross flow
field features. After the number of particles in the do-
main comes to approximately steady state, they are
“cloned” and a number of time steps are run. This
process is repeated until the desired particle density
is reached or until the computing environment is no
longer able to provide the code with additional mem-
ory. Statistical averages are then collected. The sim-
ulation discussed here contained about 4.25- 10° par-
ticles that were averaged over alternate time steps,
in order to improve the statistical independence of
the sampling. The averaging was done over 600 steps
for a total of 300 time samples. The free stream
number density in the simulation was 8 particles/cell.
Figure 2 shows a comparison of the normalized temn-
peratures along the geometric stagnation streamline
for both calculations. Because the original calcula-
tion was close to being in thermal equilibrium, the
thermal energy content is represented here by a sin-
gle temperature, namely that of translation. The
static temperature ratio across a shock in a perfect
gas with v = 1.4 at this Mach number is 245. The
peak value reached in the previous calculation was
238 which then decreased toward the body surface
because of the constant temperature boundary con-
ditions. For the current simulation the translational
temperature ratio for the mixture normalized on the
free stream temperature reaches a peak value of 260
showing an expected overshoot. The rotational and
vibrational temperatures lag behind the translational
temperature with negligible vibrational energy con-
tent at the stagnation point. Figure 3 shows local
species concentrations normalized by their values in
the free stream. Any deviation from one on this plot
indicates mass diffusion of species because of varying
molecular velocities corresponding to their differing
molecular weights. Atomic oxygen, as the lightest
and smallest specie, is depleted in the region of high
translational temperature and high density as it dif-



fuses the easiest. Conversely, molecular oxygen, as
the heaviest specie, shows a slight increase in concen-
tration. Because there is no chemistry, the molec-
ular weight of the mixture varies only slightly from
the free stream value such that the stagnation point
environment for the current calculation is similar to
that in the previous calculation. The shock standoff
distance at the stagnation point is similar, although
the shock thickness is larger due to the softer inter-
molecular potential. This can be seen in figures 4a
and 4b which show density contours in the symmetry
plane of the vehicle for both calculations. Near the
lower skirt of the body, before the flow has turned
over the shoulder, the gas has been vibrationally ex-
cited. Careful comparison of the two figures shows
the shock standoff in the current calculation is be
smaller than in the “perfect gas” case as is to be
expected. The equilibrium temperature field for the
previous calculation and the translational tempera-
ture field for the current calculation are shown in the
symmetry plane in figures 5a,b. Both are qualita-
tively similar and should be compared to figures 6
and 7 which show respectively the rotational and vi-
brational temperature contours for the mixture. The
rotational temperature lags behind the translational
temperature along streamlines in the flow path from
the stagnation point down to the skirt of the body
and begins to relax again in the wake. This reflects
the rotational collision number of 5 used in these cal-
culations. The vibrational temperature lags consid-
erably behind both the translational and rotational
temperatures due to the collision number of 50. The
vibrational modes become significantly populated by
the time the flow has reached the skirt. The flow then
expands around the shoulder so quickly, however, that
the lowered collision rate combined with the vibra-
tional collision number is not sufficient to depopu-
late the vibrational modes which then become frozen
into the wake. There is at this time no mechanism
in the algorithm other than collisions to depopulate
these states. Figures 8a,b show velocity vectors in the
wake region plotted in the symmetry plane for both
calculations. Although the flight parameters are the
same for both calculations, only the previous simula-
tion shows evidence of vortical structures in the wake.
The most likely explanation for this difference is the
softer intermolecular potential in the present calcu-
lation, which increases the viscosity of the gas and
effectively lowers the Reynolds number of the flow.
Some of the difference may, however, be due to the

addition of the hexagonal afterbody.
Performance Estimates and Code Capabilities

The current multiple specie, three dimensional code
is named PSim. In its present form it is capable of
moving an average particle through a complete time
step, including overhead (start-up and restore costs),
in about 2.0u seconds. This compares favorably to the
single specie version which typically averaged about
1.7 seconds on similar runs. As the code is still under
development, some further improvement is expected.
These times of course vary with collision rate but
do not however vary with other problem complexities
such as number of simulated species. In the case of
the AFE simulation, the elevated collision rate results
in times as large as 5u seconds/particle/timestep.

The PSim code is complemented by a general plot-
ting system called Cplot that was developed recently
to support the very large data sets associated with
particle simulations. In its current incarnation, Cplot
performs data management and general expression
evaluation on a remote supercomputer and provides
graphical presentation and a very powerful user in-
terface on any Silicon Graphics Iris 4D workstation.
Communication is via the Unix -ockets facility. The
plot file has a very flexible format that will allow the
system to continue to be useful as PSim continues to
evolve.

Ongoing Developments

The are two primary classifications of developments
involving the Stanford particle simulation method.
First are those that deal with extending the physical
modeling capabilities of the method and second are
those aspects related to algorithm development and
high performance implementation on various machine
architectures.

Haas“w has recently developed models for implement-
ing the effects of chemical non-equilibrium and there
is currently an effort to incorporate those models into
the PSim code. There is work in progress concur-
rently that will allow the PSim code to run across a
wider range of machine platforms. Specifically, ex-
tensions will allow the method to operate not only on
vector oriented machines and single CPU mini/micro
systems, but also on parallel machines such as the In-
tel iPSC-2/RX. It will also permit the PSim code to
utilize more than one CPU on the currently targeted
Cray systems.
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Figure 1. Two views of the AFE geometry as represented in the simulation.
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Figure 2. Temperatures along the stagnation streamline from the previous and current calculations, normalized
on the free stream temperature of 190K.
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Figure 3. Species Concentrations along the stagnation streamline normalized on their values in the free stream.
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Figure 4a. Density contours in the symmetry plahe for the previous calculation normalized on the free stream
value. '



Figure 4b. Density contours in the symmetry plane for the current calculation normalized on the free stream

value.
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Figure 5a. Temperature contours in the symmetry blane for the previous calculation normalized on the free

stream value.



Figure 5b. Translational temperature‘contours in the symmetry plane for the current calculation normalized on
the free stream value. '

Figure 6. Rotational temperaiure comtours in the syrmnetry plane for the current calculation normalized on the
free stream value.



in the symmetry plane for th_e current calculation normalized on the

Figure 7. Vibrational teﬁxpera.ture contours

free stream value.
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Figure 8a. Velocity vectors in the symmetry plane for the previous calculation.
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Figure 8b. Velocity vectors in the symmetry plane for the current calculation.



